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Detection of water quality degradation of Punpun River, Patna using
remote sensing and google earth engine

Abstract- Water quality parameters are the most important indicators of water quality in inland water systems. Maintaining
systems for monitoring physicochemical parameters is time-consuming and cost-intensive, as developing appropriate river
management plans requires in-situ water quality data with high spatial and temporal resolution. In this study, we used 10-m
Sentinel-2 pictures to map the spatial changes in the Punpun River's water quality. We used spectral predictors obtained from
the satellite pictures to train one machine learning algorithm, Random Forest (RF), to predict concentrations of pH, DO,
chlorophyll, BOD, COD, TSS, and turbidity. In addition, we computed a number of metrics to evaluate the accuracy of the
water quality maps and the performance of the models, such as Mean Squared Error (MSE), Coefficient of determination
(R2), and Root Mean Squared Error (RMSE). The modelled and measured concentrations of pH, DO, chlorophyll, BOD,
COD, TSS, and turbidity exhibited good agreement with minor residual errors ranging between 0.201 mg/L and 0.241 mg/L,
according to our results. Additionally, bands 5 (B5, vegetation red edge) and 8 (B8, NIR) were found to be significant
predictors of parameter concentrations, and RF was found to be a dependable and efficient algorithm for doing so. The
Punpun River had good to exceptional concentrations of pH, DO, chlorophyll, BOD, COD, TSS, and turbidity. The Punpun
River's current state of water quality and the effectiveness of the management measures implemented to control and prevent
eutrophic issues have been spatially illuminated by our findings.
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INTRODUCTION

Water is one of the most valuable resources on which
all life depends. Water pollution degrades water quality
and affects the health of marine life and therefore the
people who use it. Therefore, it is crucial to monitor water
quality and ensure the survival of marine life.1

Understanding water quality concerns and issues is also
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critical to curbing and controlling water pollution. To
assess the state of the nautical ecosystem, several
governments around the world have begun to develop
ecological water management programs. Approximately
one billion people do not have access to clean drinking
water, and two million people die every year as a result of
contaminated water and poor sanitation and cleanliness.
Therefore, maintaining freshwater quality is crucial.2

Water quality is critical to the long-term viability of a
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diversion plan. Poor water quality can also be costly as
resources must be directed toward repairing water supply
infrastructure as soon as a problem occurs. To ensure safe
drinking water at a reasonable cost, the demand for
improved water management and water quality control has
increased. To address these issues, systematic assessments
of freshwater, disposal systems, and organizational
monitoring issues are required.3

 It is common knowledge that clean water is essential
for a healthy life. Across the world, freshwater resources
are threatened not only by over-exploitation and poor
management, but also by ecological degradation. The main
cause of freshwater pollution is the discharge of untreated
waste, dumping of industrial wastewater and runoff from
agricultural fields. Industrial growth, urbanization and the
increasing use of synthetic organic substances are having
serious and negative impacts on freshwater bodies.
Freshwater resources are under severe and increasing
environmental stress. The problem of freshwater pollution
in India came to the fore in the early 1960s, with domestic
sewage, sewage, sewage and industrial effluent discharges
being the major sources of pollution in various cities. In
recent years due to continuous population growth, rapid
industrialization and various waste management
technologies. The human factor is the main cause of river
pollution. In Patna, Punpun River is the main source of
freshwater water. In recent decades there has been great
concern about the deterioration of water quality. The river
has been polluted during its course, particularly between
Madhopur and Patna urban areas, by indiscriminate
dumping of domestic sewage, immersion of idols, dumping
of plastics into drains, bathing of cattle and agricultural
effluents as well as partially treated and untreated sewage
in large quantities recorded. The pollutants flowing into
the river come from the waste of the villages located on
its banks.

The effects of severe hypoxia (e.g. oxygen levels
below 2 mg/L) on mortality and population of aquatic
species are devastating.4 Decades of scientific research
have highlighted the long-term impacts of reduced water
quality on the operation of healthy water systems.2,5,6 For
example, empirical modelling results suggest that fish
biases and anomalies, reduced population sizes and
structure of various species (e.g. insects, macro
invertebrates) may be related to the Punpun River.7 As river
characteristics change, it becomes increasingly necessary

to maintain continuous spatiotemporal assessment of water
quality variability to rapidly manage changing inland water
quality. However, effective management requires
comprehensive observations, integrated analysis, improved
monitoring and prediction of water quality, and a synoptic
view of numerous river locations simultaneously. To
minimize the need for costly and time-consuming field
monitoring, better technologies are required that are
beneficial to resource managers.8 Fortunately, remote
sensing (RS) has been recognized as an ideal solution for
monitoring water quality in freshwater systems and has
demonstrated successful applications.9 Remote sensing
provides consistent observations, a synoptic perspective,
and instant assessment of temporal land use patterns at
various spatial resolutions. For example, recent studies
have used medium spatial resolution images such as the
30 m Landsat10 and the 10 m Sentinel-211 to obtain explicit
spatial distributions create water quality parameters (e.g.
pH, DO, chlorophyll, BOD, COD, TSS and turbidity).
However, estimating water quality parameters using RS
images still remains a challenge. Spectrally speaking, water
quality is a non-optically active parameter as it does not
change the spectral properties of water through
absorption.12 The lack of wavelength absorption for
parameters means that it cannot be directly quantified by
spectral analysis. Therefore, estimation of water quality
from RS images could be achieved indirectly by
introducing additional indicator variables or spectral
indices into the models used. Predictive models that use
machine learning techniques on RS images to assess water
quality parameters have gained popularity in recent years.
These machine learning methods have been shown in
several studies to satisfactorily approximate water quality
parameters in aquatic environments.5,10,15 There are a
number of these machine learning models, but they do not
include key predictors of water quality parameters.
Furthermore, there are only a few publications that used a
satellite image with a resolution of 10 m to describe
fluctuations in water quality over different time points.

In the current study, we proposed to extend the use
of Sentinel-2 images to extract and map the concentration
of physiochemical parameters in the Punpun River section
using a machine learning technique, Random Forest (RF).
Our specific objectives include: (1) the development of
models to estimate the concentrations of physicochemical
parameters of water from Sentinel-2 images, (2) the
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identification of important predictive variables for
physiochemical parameters of water that are essential,
readily available and are easy to measure, (3) create spatial
distribution maps for physiochemical parameters of water
at different locations in the selected study area. The results
obtained in this study would have significant implications
for selecting the most appropriate machine learning
algorithm and key predictors under RF. Finally, mapping
water quality parameters in the Punpun River system, let
alone using a 10 m resolution satellite image. This research
is required to obtain a comprehensive overview of the water
quality parameters at different river locations and report
their current status.

MATERIALS & METHODS

Study area
 The study area is a 10 km long stretch of the Punpun

River in the southwest of Patna city (Fig. 1). The urban
drains of Badshahi flow into the Punpun River. It originates
from Palamu district of Jharkhand and flows through all
or parts of four districts of Bihar including Greene, Chatra,
Aurangabad, Gaya and Patna and joins the Ganga River.
The study area is subtropical-continental with an average
annual temperature of 59.6 F to 89.1 F. The average annual
precipitation ranges from 14 to 45.1 inches and increases
toward the south and about one-third of the precipitation
becomes surface runoff.16 Commercial fertilizers N
(nitrogen) and P (P in the form of P

2
O

5
-phosphate and K

2
O-

potash) are widely used in the basin as agriculture is the
dominant land cover. These commercial fertilizers from
row crops, along with livestock manure, are the main
sources of nutrients in surface and groundwater.
In-situ field monitoring sites

We deployed three in situ water quality monitoring
parameters at strategic locations along the Punpun River
(Fig. 1). The sites were also near major wastewater
discharges into rivers. The sampling sites were divided
into three locations: upstream, middle stream and
downstream. Upstream, the upper part of the river was in
Madhopur village, under block Patna Sadar of Patna
District, Bihar and the middle river - before the discharge
of Badshahi urban sewage - and downstream - after the
discharge of sewage into the river. We collected the water
sample in a plastic tap water bottle and transferred it to
the laboratory for further analysis. We analysed the water
quality parameters according to standard protocols17 in the
T.P.S. College, Patna (Patliputra University) laboratory.

Satellite remote sensing dataset
Remote sensing is capable of covering large areas of

the river and allows for faster temporal analysis of pH,
DO levels, chlorophyll, BOD, COD, TSS and turbidity.
We used the Sentinel-2 multispectral images available in
the European Space Agency (ESA) Scientific Data Hub
(Sentinel-1 Scientific Data Hub, 2021). Sentinel-2 has 13
spectral bands: four bands with a resolution of 10 m, six
bands with a resolution of 20 m and three bands with a
spatial resolution of 60 m. The orbit width is 290 km. In
this work, we downloaded the associated Sentinel-2 Level
2A scenes captured on October 1 to 20, 2023, cloud-free
and available for all sampling locations using Google Earth
Engine. Distributed Level 2 products have been
atmospherically corrected by the Sen2Cor package. Both
images matched the field campaign days. We resampled
all bands at a resolution of 20 m to 10 m to maintain
consistency with the four native bands (band 2 in blue,
band 3 in green, band 4 in red, and band 8 in NIR). Using
Sentinel-2 imagery, we delineated the concentrations of
pH, dissolved oxygen, chlorophyll, BOD, COD, TSS, and
turbidity in the Punpun River using spectral water indices
such as the Automated Water Extraction Index (no shade)
(AWEInsh)18  and the Sentinel Water Mask (SWM)19. The
AWEInsh maximizes the separability of water and non-
water pixels through band differentiation and addition and
application of various coefficients. SWM increases the
ability to detect water by enhancing visual contrast and
value separability between water and non-water pixels.
The AWEInsh for Sentinel is expressed by equation. (1).
where the corresponding bands for Sentinel are Band 3
for Green, Band 8 for NIR, Band 11 for SWIR1 and Band
12 for SWIR2. The SWM for Sentinel is expressed by
Equation. (2).

Fig. 1. The Punpun River study area covers one
sampling site and one Google Earth Pro image.

Roy et al.- Detection of water quality degradation of Punpun River, Patna using remote sensing and google earth engine
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To estimate turbidity in water bodies, the Normalize
Difference Turbidity Index (NDTI) is used, which is
estimated based on the spectral reflectance values of the
water pixels. Therefore, as the turbidity increases, the
reflectivity of the red spectrum also increases. The NDTI
for Sentinel is expressed by Equation. (3).

We created a map of water indices for the October
2023 images. For parts of the river that are narrow (less
than one pixel) that the algorithm was unable to extract,
we manually intervened by adjusting the river width using
high spatial resolution images from Google Earth as base
maps. Although manual feature extraction is subjective,
we believe that the intervention has clear and
methodological advantages over automated classification
methods.20 Using Google Earth images as auxiliary
datasets improves post-processing, fills missing patches,
and improves the accuracy of the final classification
product.21

Classification algorithms
We used random forest classification algorithms to

map the pH, DO, chlorophyll, BOD, COD, TSS and
turbidity concentrations by running a set of codes in Google
Earth Engine.22 RF are popular algorithms for mapping
rivers and other surface waters9,23 including water quality
parameters using remote sensing data.13,24-26 RF provides
a way to select important covariates based on changes in
prediction accuracy when variables are added to or deleted
from models. RF is a non-parametric supervised classifier
that uses the classification and regression tree (CART) by
bagging, randomly selecting a set of features and building
a classifier with a bootstrapping sample of the training
data to create a tree.27 When selecting RF training data, it
is possible that the same sample will be selected multiple
times, while others may not be selected at all. Besides RF
being quite robust for highly collinear variables, the
random selection process at each tree node results in low
correlation between trees and avoids overfitting.28

Covariates, training, and test datasets
To build the RF models for mapping the Punpun

River, we used a set of covariates for image month
(October) and a set of nine features. The set of covariates
included the following features: Band 2 (492.1 nm), Band
3 (559.0 nm), Band 4 (665.0 nm), Band 5 (703.8 nm),
Band 6 (740.2 nm), band 7 (782.5 nm), Band 8 (835.1
nm), Band 8A (864.8 nm), Band 11 (1613.7 nm), Band 12
(2202.4 nm), AWEI and SWM. We made the selection of
spectral bands and indices from previous studies in which

machine learning algorithms were applied to remote
sensing data to classify water bodies and water quality
parameters.1,29-31 We used a specific range of pH, DO,
chlorophyll, BOD, COD, TSS and turbidity datasets within
days in October 2023 to correspond to the time the satellite
images were acquired. We manually checked the pH, DO,
chlorophyll, BOD, COD, TSS, and turbidity values for
abnormal fluctuations within the time period. Before
running the models, we split the final dataset into training
and testing sets. We used the Google Earth Engine code
from Brus et al. (2011)32 applied to achieve this step a
split criterion of 70-30, with 70% of the sample data used
for calibration and 30% for validation.

Fig.2. Run the classification algorithms in google
earth engine.

Fig.3. Sampling site photographs and sampling
collection.

RESULT

Posterior probability water quality maps
We created pH, DO, chlorophyll, BOD, COD, TSS

and turbidity maps for October data. The average
physiochemical parameters for RF mapping results in the
form of posterior probability maps for subsections of the
Punpun river basin are shown in Fig. 4. The average values
of water quality parameters were all above concentration
value of 7.52, 7.35 mg/L, 24.27 mg/L, 146.10 mg/L, 118.05
mg/L, 19.16 ug/L for the entire section of the Punpun River
in October. We made comparisons between upstream and
downstream flow by creating difference maps for the entire
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river section and enlarging the sections of the three
sampling sites for viewing. These sampling sites in the
upper section are surrounded by farmland, while the
sampling sites in the lower section are generally located
in urban areas with minimal agricultural land use.
Comparing both sections, it was found that the lower
section had lower modelled DO values than the upper
section, especially in October. The summary of prediction
errors for RF models in predicting physiochemical
parameters is shown in Fig. 4. For both RFs, the difference
between the predicted and actual values was comparable.
Error values were also similarly consistent between
parameters, with RF for October having a range value of
0.98 to 0.86. Using the prediction error values, we
evaluated the map accuracy using the two evaluators in
Table 2. RMSE and MSE for RF were calculated.

Magnitudes of errors shown in MSE, and RMSE
were considerably similar. No unexplained distribution
skewness from very large values were observed in the
RMSE. We also presented the validation results in
graphical forms - scatter and spatial bubble plots -We
further evaluated our results based on a predictive variable.
Our results showed that the predictive capabilities of RF
were reduced from MSE of 0.02, 0.56 mg/L, 20.83 mg/L,
1583 mg/L, 815 mg/L, 3.50 respectively.

Fig. 4. Averaged pH, DO, Chlorophyll, BOD, COD, TSS,
and Turbidity (mg/L) for RF results in forms of
posterior probability maps for the study reach.

Parameter Min Max Mean STD SE 
PH 7.2 8.08 7.63 0.44 0.25 
DO 5.3 9 7.63 2.03 1.17 

BOD 1.2 60 21.16 33.63 19.41 
COD 5 316 108.76 179.46 103.61 
TSS 10 258 93.06 142.83 82.46 
CHL 15 25 20 5 2.88 

 

Table.1. Descriptive statistics of all parameters along
the stretch of the Punpun River.

Table.2. Summary of map quality measures for the two
mapping methods, RF.

Parameter R2 RMSE MSE 
PH 0.86 0.048 0.022 
DO 0.91 0.147 0.565 

BOD 0.98 1.832 20.83 
COD 0.97 9.342 1583.6 
TSS 0.97 11.89 815.09 
CHL 0.91 0.016 3.5 

Roy et al.- Detection of water quality degradation of Punpun River, Patna using remote sensing and google earth engine
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DISCUSSION

Model performance and Sentinel images
The results of our investigation showed that Sentinel-

2 satellite data with a resolution of 10 m was efficient in
retrieving and predicting pH, DO content, chlorophyll,
BOD, COD, TSS and turbidity in rivers for specific
observation months. Furthermore, the results showed that
parameters could be successfully predicted through
calibration and validation using RF using Sentinel-2. The
RF algorithms were shown to be effective in estimating
parameter concentrations along the Punpun River and
provide highly acceptable results. The promising ability
of RF to spatially map pH, DO, chlorophyll, BOD, COD,
TSS and turbidity is not surprising as these models have
already demonstrated remarkable predictive accuracy.2,5,6

The RMSE and MSE values for checking various
parameters showed that the RF is extremely accurate; even
the r values were equal to or greater than 0.86 in all cases.
The good agreement between modelled and measured pH,
DO, chlorophyll, BOD, COD, TSS and turbidity
concentrations, further reinforced by the minimal residual
errors ranging from 0.016 mg/L to 11.89 mg/L, highlights
the robustness of the model predictions for both dates.
These inconsistent results should not be interpreted as a
limitation on the potential applicability of the algorithms
in predicting DO. Instead, they served as a reminder that

Fig.5. Graphical representation of Model validation with coefficient of determination.

indirectly determining precise pH, DO, chlorophyll, BOD,
COD, TSS and turbidity concentrations from temporal
satellite imagery could only be done with the right training
data set. If a prediction is made across the same modelling
space using data from a different time period, the results
may be affected.33 However, when we applied our model
with pooled covariates from sentinel images of different
dates, it had minimal impact on the predictions of pH, DO,
chlorophyll, BOD, COD, TSS, and turbidity for self-
trained single images.
Water quality mapping and concentration

Over the length of the studied river, pH, DO,
chlorophyll, BOD, COD, TSS and turbidity concentration
values in the Punpun River were in the good to excellent
range based on the minimum wastewater habitat criterion
of DO of 5.3 mg/L if wastewater quality is lacking.
Although there is no consistent trend data for individual
sampling sites, higher average BOD, COD, TSS and
turbidity concentrations were predicted for the lower
portion of the Punpun River, where sites were generally
located in urban areas with minimal agricultural land use.
These sites were predicted to have higher DO and Chl
concentrations in the upper reaches of the river. Although
we lacked an independent data set to confirm the sources
of larger DO concentration gradients in the lower section
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compared to the upper section, it is possible that this may
be due to lower biological oxygen demand (BOD).10 In a
biological and water quality study conducted in the Punpun
River basin, lower DO concentrations were found in the
headwater streams with the highest five-day BOD.

CONCLUSIONS

This study demonstrated the applicability of Sentinel-
2 imagery to map the spatial distribution of pH, DO,
chlorophyll, BOD, COD, TSS and turbidity concentrations
in the Punpun River using machine learning techniques.
The resulting overall accuracy of the various parameter
extraction from our models demonstrated that it is suitable
to use the Sentinel-2 dataset to examine the temporal
changes in water quality parameter concentrations in the
Punpun River section. With the right training data, the
remote sensing methods and algorithms used here could
be used to indirectly determine pH, DO, chlorophyll, BOD,
COD, TSS and turbidity concentrations in other river
systems. However, the physical, chemical and biological
processes within watersheds are complicated, particularly
when processes such as nutrient conversion in rivers are
not well understood. Using predictive models to represent
the spatiotemporal variability of parameters would always
lead to uncertainties in research. The machine learning
method has its own advantages and disadvantages, and no
single algorithm is suitable for all applications. Because
our models are data-driven, it is important to apply an
adaptive management approach to future model changes.
As new input variables become available, we recommend
making changes to the choices and re-running the models.
Finally, we provided the Google Earth Engine script used
to run our models so that future research can extend the
conclusions of this work to other river systems.
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