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Abstract :  Mathematical and statistical models can serve as tools for understanding the epidemiology of human
immunodeficiency virus and acquired immunodeficiency syndrome if they are constructed carefully. A mathematical
model has been developed for the formulation and simulation of real phenomenon by which predictions and forecasts
can be made. These models developed using differential equations. The full dynamics of the model and the effects of
varying the functional forms are not completely understood. Moreover, the effects of small-scale physical influences are
only recently becoming apparent. We investigated the use of a simple plankton population model based on observation
from a pond.
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INTRODUCTION
The prospect of climate change has stimulated

research into several biological processes that might affect
climate. One such process that has attracted is change in
temperature of water. In natural water bodies, interactions
amongst various components continued endlessly. Most
common functional interaction of such water bodies are
food interactions. Phytoplanktons depend on nutrients
present in water. Simple models of plankton-nutrient
populations often consist of ordinary differential equations,
describing the time dependence of nutrients and
Phytoplanktons in aquatic ponds.
BACKGROUND

Deterministic mathematical models of nutrient-
plankton interaction with different complexity have been
constructed and analyzed by Riley et al. (1949). The
majority of these models that appeared later were
formulated in terms of differential equations (Steele and
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Henderson 1981, 1992; Evans and Parslow, 1985;
Busenberg et al. 1990; Edwards , 2001;  Jang and
Baglama, 2000, 2003).  Ruan (2001) analyzed the
Oscillations in various plankton models along with nutrient
recycling. Edwards (2001) discussed a dynamic approach
while adding detritus to classical NPZ model. In the
following account a simple model is derived on change of
rate of Nutrients and amount of nutrients. The conditions
of stability or non-stability are also discussed.
Section 1
The model:
The present model is based on the assumption that the
nutrients and planktons are in an equilibrium state. These
are well distributed and also there is no drift in their
concentration and numbers respectively. While
constructing this model ordinary differential equations
were used.

dN/dt  =  A-αo  NHere, A is a constant, N represents concentration of
nutrient and t is time dN/dt is change in concentration of
nutrients over time.

In the next part of paper, a simple model for
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In the next part of paper, a simple model for

interaction of Nutrients and Plankton population is framed
and stability analysis and hopf-bifurcation is described.
Section 2

Consider the system when only nutrients are present,
hence the equation will be:
dN / dt  =  A -  αo  N  (1.1)
N represents concentration of nutrient and t is time.
dN/dt  is change in concentration of nutrients over time.
N = (n1, n2, n3, ………nn)Definition

Let the N =  φ (t) is solution of (1.1), defined for all
t   0. The solution φ is said to be stable if for every  €  0
there is a    δ  0 such that if    is any solution of (1.1)
satisfying    |  (0)     -   φ (0)   | δ then   is defined for
all  t 0 and |  (t)   -   φ (t)   |   € for all  t  0. If  φ is
not stable it is said to be unstable.

For non linear equations it is not always possible to
answer the equation for stability or instability for all
solutions of equation (1.1). For linear equations with
constant coefficients the question  can  always be solved.
For linear system we have following theorem:
Theorem 1.1

Every solution of dN/dt = A -  αo  N is stable if and
only if the identically zero solution is stable.
The  Proof:

Let φ (t) be the fundamental matrix associated with
(1.1), that is  φ’ (t) = A*φ(t) and  φ (0)  = I, the identity
matrix. Any solution of (1.1) may be written in the form
(t) = c φ(t) for some constant vector c, where c = (0).
So, first we assume that the identically zero solution is
stable we get, that for every  €   0 there is a δ 0 such
that if   |   (0)     -   0   |   δ, then |  (t)     -   0   | 
€. i.e. if | c |  δ  then |  c φ(t)  |  €. (1.2).

Now,  let φ be an arbitrary solution of (1.1) and let
φ1 (0)  = .
 If |   (0) - φ1 (0)   | δ then  | c  -  |   δ . So, replace
c in (1.2) by c – .
 we conclude then that |(c – ) φ (t)  |     €.  Whenever
| c  -  |   δ.
But (c–) φ (t) = c φ (t) -  φ (t) =  (t) – φ1(t)  (1.3)
So we have  |   (t) - φ1 (t) |  € whenever  |  (0) - φ1 (0)
|  δ.
Thus, φ 1 is stable.
Conversely if every solution is stable, then certainly zero
solution is stable. So, the theorem is proved.
Again N =  φ (t)   is said to be asymptotically  stable  if  for
every €   0 there is a  δ  0 such  that if  is any
solution of (1.1) satisfying

 |  (0) - φ1 (0) |  δ  then  is defined for all  t0;
|  (t) - φ1 (t) |   € .
Lim |  (t) - φ1 (t) | = 0  (1.4)
 t

The zero solution of (1.1) is unstable if the real part
of atleast of the  eigen values of A* is positive  and it is
asymptotically stable if the real parts of eigen values of A*
are negative.
   dN/dt  =  dξ/dt  =  f (N)  =  f (N0 + ξ)  =  g (ξ)
   dξ/dt   = A* ξ                (1.5)
We shall require A*   such that
|g (ξ)  -  A* ξ |    is very small.
Lim       |g (ξ)  -  A* ξ |   /  |ξ|  =  0  (1.6)
|ξ |     0

The components of vector g (ξ) are differentiable.
Section 3
Consider the system for interaction between nutrients and
Phytoplanktons:-

dN / dt  =  A – α1 PN +  P - αo  N  (1a)
dP/dt    =  β0 α1 PN  - β1 P – β2  P2  (1b)

Where dN/dt  represents rate of change of concentrations
of nutrients,

dP/dt represents rate of change concentrations of
Phytoplanktons
α1 ,  , α0, β0, β1, β2   are positive parameters.
0β0  1; β1  
α0   =  rate of nutrients flushed out.
α1   = rate of up taking nutrients by Phytoplanktons.
    = rate of conversion of Phytoplanktons into nutrients.
A =  constant input through human action.
β0  = rate of consumption of nutrients by Phytoplanktons
β1   = phytoplankton washout rate.
β2   = death rate of Phytoplanktons.
Case I

Trivial equilibrium point E0 (0, 0) always exist.
Case II

The equilibrium point   E1  (A/ α0 , 0)  exist on
boundary.
Case III

Non-trivial equilibrium E2  (N*, P*) exist if  there
is a positive solution exists to the following set of equations:
f1 (N, P) a”  A – α1 PN +  P - αo  N = 0 (2a)
f2 (N, P) a” β0 α1 PN - β1 P – β2 P2 = 0 (2b)
N* =

P* is given by the quadratic equation
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α1 β2 P*2  + (α1 β1 + α0  β2- α1 u  β0   ) P* + (α0 β1 - A α1 β0 ) = 0
Variational matrix is given by:

V = (3)
At point E0

V0 =  (4)
Eigen values of which are - αo and   - β1 ; both are negative.
Hence (0,0) is stable  node.
At point E1  :

V1 = (5)

Eigen values of which are - αo  and β0 α1    - β1 . If  β1   <
β0 α1  ; we have a saddle  point . Hence the system is
unstable.

At point E2:

V2 =   (6)

Eigen values are given by: 

Where:
b = α1  P*-  α0 -  β2  P*
a = 1
c = α12 P* ( β1,+ β2   P*) - α1 β2 P 

*2  - α1   β0  P*  - α0   β2 P*

If the sign of the Eigen values above will differ, then
fixed point is the saddle point. The system, hence, is
unstable. The stability of this fixed point is of importence.
If it were stable non-zero populations might be attracted
towards it. The dynamics of the system might lead towards
the extinction of both nutrients and Phytoplanktons for
many cases of initial population level. If the sign of Eigen
values above remains same the system is stable.

DISCUSSION
The model described and discussed above is a

simplified model. In this model simplified version of the
system has been depicted. In the present paper the
analytical method disclosed that even if the system is in a
steady state and if the fluctuations of the medium occur,
one can predict about the system. We also found that the
plankton dominance change according to the time. Thus,
we found that as long as assumptions (well incorporated
planktons and absence of intra-trophism) are applicable,
the model serves the needs of the biological predictions.
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