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Next generation sequencing for non-typhoidal Salmonella:
Characterization and identification of virulence and antimicrobial

resistance for food safety surveillance - An overview

Abstract- Next Generation Sequencing (NGS) technologies have revolutionized bacterium DNA analysis, providing a rapid
and cost-effective tool for surveillance. NGS allows a variety of analyses, including multilocus sequence typing, identification
of antibiotic resistance, and pathogenicity characterization. Non-Typhoidal Salmonella (NTS), a zoonotic pathogen, represents
a significant threat to food safety since it is considered as a common contaminant of food animals. Genomic factors that
encode bacterial virulence and antimicrobial resistance are crucial for understanding NTS pathogenesis. Next-generation
sequencing enables molecular detection, serological assays, and genotyping, providing insights into virulence and antibiotic
resistance factors. NGS coupled with bioinformatics tools, emerges as a potent molecular technology, transforming microbiology
through genetic sequencing technologies. The landscape of molecular research in food safety is rapidly transitioning from
traditional molecular subtyping methods to typing methods based on Next Generation Sequencing (NGS). In this review, we
explore the use of next generation sequencing in the analysis of Non-Typhoidal Salmonella DNA, particularly its effectiveness
in typing bacterial strains and identifying genes linked to virulence and antibiotic resistance. This highlights the significant
contributions of NGS to microbiological research in food safety.

Key words: Antimicrobial Resistance gene, Multilocus Sequence Typing (MLST), Next-Generation Sequencing (NGS),
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INTRODUCTION

Non-typhoidal Salmonella (NTS) is a leading cause
of food-borne diseases worldwide as it stands as one of the
leading contributors to diarrheal illnesses, representing a
major public health challenge. The genus Salmonella is
prevalent among food animals, making it a common cause
of foodborne diseases worldwide. Human infections caused
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by NTS primarily occur through the consumption of
contaminated food or water.1-3 Infections caused by the
pathogenic bacterial species Salmonella enterica impose
significant global health burdens. This widely distributed
species comprises approximately 2600 distinct serovars
categorized as either typhoidal or non-typhoidal
Salmonella. Despite their genetic similarities, these two
groups induce entirely different illnesses and elicit distinct
immune responses in human beings.4,5 Non-typhoidal
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Salmonella infections are considered zoonotic, as they can
be transmitted between animals and humans. Salmonellosis
encompasses a spectrum of illnesses affecting both humans
and animals, ranging from acute gastroenteritis to
bacteraemia and extra-intestinal infections. While NTS
intestinal infections are typically self-limiting, prompt
antimicrobial therapy is crucial when the bacteria
disseminate outside the intestine.6,7

Salmonellosis is more prevalent in developing
nations, with multidrug-resistant Salmonella posing a
significant threat, particularly in South America, Africa,
and Asia.8 The inadequate control programs and the lack
of information from developing countries contribute to the
underreporting of Salmonella in global surveillance
systems.9 These countries, even though they are
participating in the One Health program which addresses
health issues in humans, animal, and environment, face
challenges in its implementation. In these countries,
particular attention is given to zoonotic pathogens like Non-
typhoidal Salmonella. The latter illustrates the kind of
zoonotic risk One Health strategies seek to address,
especially where food safety and transmission of diseases
from animals to humans are major public health
concerns.10,11

The complexity of NTS is compounded by numerous
genes encoding virulence and antibiotic resistance factors
critical to the bacteria's pathogenesis.12 Salmonella strains
harbour numerous virulence factors distributed throughout
the genome, including the Salmonella pathogenicity islands
(SPIs) and mobile genetic elements like plasmids and
prophages. Some components are shared across all
Salmonella serotypes, while others are serovar-specific.1

While the presence of various virulence factors within NTS
underlines the complexity of their pathogenic mechanisms,
the situation is further complicated by the emergence of
antimicrobial resistance (AMR). The latter encompasses
numerous genes encoding resistance to antimicrobial
agents. These genes are often located on plasmids,
transposons, gene cassettes, or variants of Salmonella
Genomic Islands.7

To address Salmonella's virulence and resistance
challenges, Next Generation Sequencing (NGS) proves
effective as an emerging technology allowing for the
comprehensive analysis of an organism's genome. It proves
to be a quick and efficient method in foodborne disease
surveillance.13 Compared to conventional testing methods,
NGS provides more detailed information on the genotypic

traits of a pathogen, including its virulence factors and
antibiotic resistance determinants. This assists in
understanding and controlling its pathogenic traits. Recent
research indicates that NGS accurately predicts
pathogenicity and antimicrobial properties of various
pathogens, including Salmonella, providing valuable
insights into the pathogenic potential of the bacteria.1.14,15

Microbiology is thus undergoing a transformative
revolution with advances in genome sequencing
technologies. When combined with bioinformatics tools,
next generation sequencing becomes a powerful technology
with a wide range of applications.16

In this paper, we present a broad overview of Non-
typhoidal Salmonella , addressing its taxonomy,
nomenclature, pathogenicity and the critical issue of
multidrug resistance. Additionally, we examine the role of
Next Generation Sequencing (NGS) in revolutionizing
NTS surveillance since these technologies enable a detailed
analysis of pathogens' genomic traits, marking a
transformative era in the field of food safety surveillance.
Non-typhoidal Salmonella: An overview

Global Impact of Non-typhoidal Salmonella
Salmonellosis is among the most prevalent infections

worldwide. The global health burden caused by NTS is
significant because these infections are being
predominantly transmitted through the consumption of
contaminated food or water.17 In fact, 94% of Salmonella
cases are linked to foodborne transmission, with common
sources including raw vegetables, unpasteurized dairy
products, undercooked eggs, poultry, beef, and pig.18 NTS
accounts for approximately 93.8 million cases of
gastroenteritis annually worldwide, with an estimated 80.3
million cases attributed to foodborne transmission alone,
and about 155.000 human deaths each year.19,20

Salmonellosis encompasses a spectrum of illnesses ranging
from self-limiting gastroenteritis to more serious,
potentially fatal, extra-intestinal infections like bacteraemia.
In fact, non-developing countries, particularly in Asia and
Africa, are the most harmed with such pathogens.21-28 In
Africa, NTS infections, being one of the major causes of
bacteraemia, appear to be endemic, mostly in children.24,29

These illnesses most occur in sub-Saharan Africa. A recent
meta-analysis showed that there were an estimated 535 000
non-typhoidal Salmonella invasive disease illnesses and
that 77 500 deaths were due to this disease in 2017.21,24-27,30

In Asia, similar death rates were observed for invasive NTS
infections.22,23 Overall, several Non-typhoidal Salmonella
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serovars capable of causing invasive diseases are showing
resistance to multiple antimicrobial agents, including those
recommended for clinical treatments. The development of
antimicrobial resistance in NTS serovars has far-reaching
implications. Beyond compromising the effectiveness of
standard treatment protocols, it significantly impacts
clinical outcomes. Antimicrobial-resistant NTS infections
often lead to more severe illness, prolonged hospitalization,
increased treatment failure rates, and a higher risk of
mortality.

History of Salmonella
Salmonella has a rich history dating back to the 1800s.

In 1888, the successful cultivation of the organism was
achieved by Salmon and Smith, while Gartner reported the
initial human case and isolation of the bacteria.31 The
nomenclature "Salmonella" was established in 1900, a
tribute to its discovery in the laboratory of Daniel Elmer
Salmon.32 Since then, significant confusion among strains
has been observed in relation to the large number of isolated
Salmonella strains. Only the detailed study of antigens has
made possible the valid identification and classification of
strains. The serological study describes the O and H
antigens of Salmonella, enabling precise identification of
the bacterium.33 In 1926, Bruce White presented the first
outline of the antigenic structure of Salmonella species.
White's research was taken up and expanded by Kauffmann
(1941), who developed the Kauffmann-White Scheme, the
basis for all studies in the field of Salmonella. This scheme
has gained general agreement from the scientific
community. This scheme gives each known strain of
Salmonella to date a distinct identity.33-36

The update of this scheme is the responsibility of the
World Health Organization Collaborating Centre for
Reference and Research on Salmonella, OMS-Salm
(Pasteur Institute, Paris, France), in collaboration with the
World Health Organization (WHO). New serotypes are
continually documented in the list of the Kauffmann-White-
Le Minor scheme,35,36 last updated, to the best of our
knowledge, in 2014.36

Bacteriological characteristics
Belonging to the Enterobacteriaceae family,

Salmonella is characterized by consistent morphological
and biochemical features. The bacilli typically measure
between 2 to 5 μ m in length and 0.7 to 1.5 μ m in width.
Salmonella is Gram-negative, oxidase-negative and the
majority of its strains display motility, facilitated by
peritrichous flagella, produces gas from glucose and exhibit

the ability to reduce nitrates to nitrites.37,31 In general, the
biochemical characteristics of non-typhoidal Salmonella
serotypes are as follows: lactose-, ONPG-, H2S+, LDC+,
ODC+, urease-, indole-, gelatinase-, DNase-, Simmons
citrate-, adonitol-, glycerol-, galacturonate-. Some
phenotypic properties of Salmonella are so specific that
they are used for the enrichment, selection, isolation, and
differentiation of colonies. Salmonella and other
Enterobacteriaceae are resistant to novobiocin, selenite,
tergitol, and bile salts, especially deoxycholate. The most
selective media such as the Salmonella-Shigella (S.S)
medium, contains bile salts and brilliant green as selection
agents, lactose and sodium thiosulfate as substrates, and
neutral red and ferric citrates as indicators. Salmonella
strains typically yield colonies (usually with a diameter of
2 to 4 mm) with a black center (indicating the presence of
H2S). As a mesophilic bacterium, Salmonella grows at
temperatures close to the body temperature of warm-
blooded animals (35-43°C), with an optimal pH of 7.2.38,37,31

Taxonomy and nomenclature
The nomenclature of Salmonella is particularly

complex as it has been the subject of controversies and
confusion over time. Before 1973, Kauffmann proposed
the idea that a serovar is equivalent to a species.39,35

However, in 1973, DNA-DNA hybridization revealed the
connection of all serovars at the species level, with
Salmonella bongori as the exception.40 The nomenclature
shift led to recognizing two Salmonella species: Salmonella
bongori and Salmonella enterica, with the latter having
six subspecies (enterica, salamae, arizonae, diarizonae,
houtenae, and indica).36 In fact, Le Minor and Popoff's
proposal avoided confusion between species and serovar
names. They proposed not to consider the names of serovars
as Latin names, to write them with an initial capital letter
(for example, Salmonella enterica subsp. enterica serovar
enteritidis). In common practice and to simplify the
nomenclature, Le Minor and Popoff also proposed to
designate serovars in an abbreviated form: Salmonella
enteritidis.41 The way Salmonella serotypes have been
designated has evolved over time. Bacteriologists used to
name them after the diseases they caused or the animal
species from which the bacillus originated. This is how we
have Salmonella gallinarum, Salmonella abortusovis,
Salmonella typhimurium, etc. However, the designation of
new serovars is based exclusively on the geographical
origin.35,42 Until the 2000s, 2463 serovars were identified,
including 1454 belonging to the enterica species and 20 to
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the bongori species. In 2014, the Kauffmann-White-Le
Minor scheme recognized 2,659 serotypes, with 1,586
under the enterica species and 22 under bongori.36

Multi-drug resistant MDR Salmonella
A noticeable rise in multi-resistant strains has been

observed, limiting treatment options and leading to
heightened morbidity and mortality rates. In recent years,
there have been concerning trends in the development of
antimicrobial resistance among Salmonella strains, posing
a significant public health challenge. From the 1950s
onwards, the emergence of non-typhoidal Salmonella
strains with decreased susceptibility to various antibiotic
classes has been observed. The emergence of antimicrobial
resistance is a common trend among bacterial pathogens
that contaminate food animals, as these drugs are often
used as growth promoters.43,44  Indeed, the emergence of
resistant bacteria can be attributed to the inappropriate use
of antimicrobial agents especially in agriculture,45 a concern
that is particularly pronounced in developing countries.46

It has often followed the use of multiple antibiotic classes
in animals which contributes to the selection of resistant
strains and their subsequent spread.46,47 For example, the
use of fluoroquinolones in chicken flocks can shift or
replace bacteria from 100% susceptible to 100% resistant
within a few days.48 The use of third-generation
cephalosporins can also be associated with the emergence
of particularly concerning Salmonella strains due to their
resistance to these antimicrobials.49,50 The misuse or overuse
of third-generation cephalosporins and fluoroquinolones
in both human medicine and agriculture has led to the
development of multidrug-resistant (MDR) Salmonella
resisting not only cephalosporins and fluoroquinolones but
also multiple other classes of antibiotics. These powerful
antibiotics, while effective against a range of bacterial
infections, can drive the selection of resistant strains among
bacteria like Salmonella. Furthermore, ESBL (extended-
spectrum Beta-Lactamase) producing strains, expressing
resistance to the broad range of antibiotics; beta-lactams,
are increasingly identified in Salmonella isolates.51 NTS
has also shown signs of acquired resistance to colistin, an
antibiotic of last-line defence against several MDR
bacteria.52 Resistance to these potent drugs limits the
available treatment options and can result in higher rates
of treatment failure and complications.

To address these trends, there is a growing emphasis
on Salmonella antimicrobial surveillance programs. Data
provided by surveillance organizations show varying levels

of bacterial resistance in different countries, due to
differences in prescribing practices of antibiotics to animals
destined for human consumption by farmers. However, due
to the globalization of trade, multi-resistant strains are easily
disseminated worldwide.48 As a result of these
dissemination patterns, it becomes crucial to understand
how antibiotic resistance can emerge, either through
mutations within bacterial populations or via the acquisition
of resistance determinants through horizontal gene transfer
mechanisms. The widespread use of antibiotics in natural
habitats truly challenges the microbial populations in these
ecosystems.46,48 Research efforts are focused on
understanding the genetic mechanisms underlying
resistance and developing new strategies for combating
drug-resistant bacteria.

Pathogenicity of Salmonella and virulence factors
Salmonella possess various virulence factors that

allow the bacteria to adapt to environmental conditions and
host responses at each stage of the infection process.
Research has led to the discovery of unique protein
secretion systems controlling the key steps of infection,
such as invading epithelial cells and surviving within
macrophages. Salmonella infections typically originate in
the intestine. After colonization, the bacteria multiply in
the digestive tract, with the cecum serving as a crucial site
for their replication. After transient bacteremia, the bacteria
could be found in regional lymph nodes and within the
liver and spleen macrophages, organs that Salmonella have
a particular affinity for. Salmonella can multiply within
these organs before being disseminated through the
bloodstream. In immunocompromised individuals,
serotypes responsible for gastroenteritis in humans can
enter the reticuloendothelial system and cause severe
systemic disease. During gastroenteritis, the symptoms are
partly related to the secretion of an enterotoxin but primarily
due to the destruction of villi, disrupting absorption
functions, and significant inflammation that increases
secretions. In cases of septicemia, the endotoxin released
from bacterial lysis is responsible for toxic shock.53

The outcome of a Salmonella infection largely
depends on the virulence of the specific strain and the host's
status. While factors like age, genetics, and the environment
primarily determine the host's condition, the bacteria's
characteristics are determined by virulence factors.54

Several Salmonella virulence factors have been identified,
including type III secretion systems, the Vi antigen, the
lipopolysaccharides, the flagella, and various other factors
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essential for the intracellular life cycle of the strain.55 The
genes encoding these factors are typically located on
Salmonella Pathogenicity Islands (SPI).55 SPIs are
extensive regions of DNA inserted into the chromosome.
They are defined as DNA segments encoding virulence
genes. This DNA region is absent from the corresponding
region in the genome of E. coli K12, which is known to be
roughly colinear with the Salmonella typhimurium
chromosome.55 Key regions of SPIs are postulated to have
played a major role in the divergence between Salmonella
and E. coli over millions of years and appear to contribute
to the adaptation of Salmonella to its hosts.55 SPIs, of
varying lengths, often carry large groups of genes
contributing to a specific virulence phenotype.56 The first
pathogenicity island, SPI1, governs the ability of
Salmonella to invade host epithelial cells through a type
III secretion system. The second island, SPI2, controls the
pathogen's survival in macrophages through a distinct type
III secretion system. The major virulence factor of SPI3 is
a system necessary for survival in the face of
intramacrophage nutritional limitations.57-59 The invasion
function in Salmonella is not solely controlled by SPI1;
genes from SPI4 also play a crucial role.60 In general, more
than 20 SPIs are identified in Salmonella, from which
islands 1, 2, and 4 are potentially conserved within the
genus, while the others are variable or partially variable.59,61

Next generation sequencing in Salmonella
The advent of Next Generation Sequencing

technologies has revolutionized pathogen surveillance as
rapid and efficient techniques enabling the comprehensive
analysis of a bacterium's complete DNA sequence.15 The
transformative impact of NGS on enteric pathogen
monitoring is now evident in public health laboratories,
where it is replacing the reliance on multiple independent
laboratory tests.28 As the cost of these technologies is
decreasing and run times are becoming more efficient and
allows for the inference of a wide range of pathogen
features in a single sequencing run, the techniques are
expected to become more widely available in routine
diagnostic laboratories.28,62 In addition, recent applications
in metagenome sequencing for infectious disease diagnosis
and outbreak investigation demonstrate the potential for
culture-independent pathogen detection from complex
clinical samples The speed of sequencing, the direct
extraction of serovar and multilocus sequence typing
information from genome data facilitates the linkage of
sequenced isolates to historical data, enabling the rapid

tracing of the origin of contamination sources.63,64 The
primary analyses employed for these purposes include
single-nucleotide polymorphism (SNP) analysis, based on
the detection of variations in single nucleotide positions in
the genome, core genome multilocus sequence typing
(cgMLST), involving a gene-by-gene examination using
only core genes, and whole-genome MLST (wgMLST),
which encompasses MLST by using both core and
accessory genes.63-68

Given the inconsistency of traditional molecular
typing methods, Multilocus Sequence Typing (MLST)
emerged as a more reliable and standardized approach for
characterizing bacterial strains.69 The MLST strategy aims
to pinpoint internal nucleotide sequences of specific
housekeeping genes, typically ranging from 400 to 500 base
pairs. This approach assigns a unique "allelic profile,"
constituting a distinct set of alleles at each locus, to
designate the sequence type (ST). MLST emerged when
robotic sequencers made it possible to determine nucleotide
sequences of a group of housekeeping genes, ribosomal
genes, and/or virulence genes.69,70 MLST has the capability
to assess sequence changes at the level of a single
nucleotide.69 Since its inception, MLST, pioneered with
the Neisseria scheme, has earned the status of the "gold
standard" in typing. Subsequently, species-specific schemes
for various bacteria and fungi have proliferated. The curated
databases housing ST profiles and MLST allele sequences
are globally dispersed.71,72 Beyond its role in outbreak
scenarios, MLST serves to categorize isolates across
different species globally.73,74 In diverse bacterial
applications, the accurate and consistent classification of
bacteria is paramount. Swift and precise identification of
infectious agent strains is crucial, particularly during
outbreaks.73,74 When needed, MLST, alongside other
genetic subtyping techniques, contributes a phylogenetic
context within a serotype, a crucial facet in public health
surveillance. The advent of cutting-edge technologies, such
as Whole Genome Sequencing (WGS), facilitates the
integration of identification, subtyping, and characterization
workflows into a singular, comprehensive platform.65

The current era of high-throughput sequencing
advocates for using Whole Genome Sequence (WGS) data
for typing. The decreasing cost of DNA sequencing,
technological advancements, and equipment cost savings
render WGS affordable for individual researchers and
routine laboratories. The higher quantity of complete MLST
profiles obtained using WGS based approaches than with
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the traditional method is proof of their superiority.75

Multilocus Sequence Typing (MLST), which indicates to
be an effective method for characterizing bacterial isolates,
has been made more versatile by WGS strategies to
accommodate high-throughput data.76 The accessibility of
WGS for routine laboratories opens avenues for trend
research, diagnoses, and surveillance, promising quick
completion times conducive to real-time surveillance and
epidemic detection.63 However, challenges lie in sifting
through voluminous data and connecting WGS to typing
schemes, enabling comparisons with other widely used
technologies and historical data.

Next generation sequencing-related techniques are
not only useful for identifying bacteria at different levels
of classification but also allow studying genetic markers,
such as those for virulence and antibiotic resistance.
Understanding these markers is crucial for gaining insights
into the pathogenesis of bacteria, the mechanisms behind
resistance to antibiotics, and the epidemiology of infectious
diseases.

Detection of virulence genes
Virulence factors enable bacteria to infect and cause

illness in their hosts. These factors are crucial for bacterial
infections, playing a key role in helping bacteria to evade
or counteract the host's immune defense. They are vital for
researching bacterial diseases and creating treatments.77

Next-genome sequencing technologies have significantly
advanced the studies on virulence markers in bacteria.
Three main methodologies are used for the identification
of virulence genes in bacterial genomes.78-81 The first one
is based on the comparison of genomes from strains with
different virulence levels. It involves analyzing the genetic
differences between highly virulent and less virulent strains.
Tools like BLAST can be used for the alignment and the
comparison of the genomes in order to identify differences
in sequences associated to virulence. This method is
commonly used in microbial genomics.78,79,82 The second
method involves the identification of laterally transferred
genomic islands, and running the genome against databases
of known virulence markers. This methodology considers
virulence genes as being acquired via gene transfer.
Software like Island Viewer integrates various genomic
island prediction methods to identify potential horizontally
acquired regions in genomes.78 The third strategy proceeds
with running the Genome against databases of Known
virulence markers: This involves comparing a genome to
existing databases to identify known virulence genes.

Databases such as VFDB (Virulence Factor Database) are
used in conjunction with tools like BLAST to identify
known virulence genes in genomic sequences.1,78

Detection of resistance genes
Antimicrobial resistance poses a major worldwide

health challenge, particularly in bacteria with decreased
susceptibility to strong antibiotics like third-generation
cephalosporins and carbapenems.83 NGS allows the
prediction of bacterial resistance types, even those not
typically assessed through conventional antimicrobial tests.
It enables real-time creation of antimicrobial resistance
profiles and prediction of multi-resistant pathogens such
as Salmonella.28,65,84 In recent years, various methods and
tools have been developed and published for detecting
genetic factors responsible for antimicrobial resistance.
These tools analyze data obtained from whole-genome
sequencing (WGS) aiding in the comprehensive
identification and understanding of resistance
mechanisms.85

Generally, the methods used for finding resistance
markers are similar to those used for detecting virulence
genes. Three primary methods are available for identifying
resistance genes. Genomic comparisons between resistant
and susceptible strains are conducted using genomic
alignments and comparisons tools such as BLAST.
Resistance genes are also identified by comparing genomic
sequences with established databases like CARD
(Comprehensive Antibiotic Resistance Database),
Resfinder, ARDB (Antibiotic Resistance Genes Database),
ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation)
and MEGARes (MEtaGenome Analyzer for Antimicrobial
Resistance) to identify known resistance genes in genomic
sequences along with with the use of alignment tools.28,86,87

The analysis of mutations conferring resistance with tools
such as BWA, Samtools, or PointFinder also enables
researchers to understand antimicrobial resistance
mechanisms.28,86,87 These emerging methods serve as
valuable additions to conventional culture-based
approaches in clinical and surveillance settings. They offer
rapid and precise means to determine resistance in both
cultivable and non-cultivable bacteria.79,85

Surveillance, Outbreaks & phylogenetic Investigations:
Next generation sequencing has proven to be an

essential tool in epidemiology, enabling detailed analysis
of infectious disease transmission. It has been particularly
effective in tracking micro-epidemics and understanding
the spread of diseases globally. Combined with
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bioinformatics, it revolutionizing Salmonella outbreak
surveillance. During infectious outbreaks, this approach
enables precise and rapid identification of the involved
strains. By comparing genomic sequences, researchers can
trace infection sources, track disease spread, and establish
connections among related cases. This tracing capability
significantly enhances epidemiological investigations,
enabling a swift response to contain disease dissemination.
Moreover, this method establishes connections among
bacterial strains from different geographical regions, aiding
in understanding transmission patterns and anticipating
risks of nationwide or even international spread. It plays a
crucial role in managing public health emergencies and
devising effective public health strategies to control
Salmonella outbreaks. These technologies have enhanced
outbreak detection by identifying outbreaks even with a
smaller number of cases.88-93 Moreover, it has significantly
improved the ability to establish connections between
human illnesses and specific infection sources. In this
revelation, NGS presents opportunities to address inquiries
regarding foodborne pathogens and potential preventive
measures that were previously unattainable.90 Whole
genome sequencing WGS was first applied to investigate
a severe listeriosis outbreak in Canada. The investigation
involved two outbreak-related isolates with close PFGE
patterns. WGS enabled a comprehensive genetic
comparison, revealing distinct strains potentially
contributing to the outbreak. Many studies showcased NGS
technics as valuable tools applicable in urgent public health
crises.94,95 Since then, the consistent integration of NGS
into disease surveillance has notably strengthened our
capabilities in identifying and investigating outbreaks, as
well as in tracking disease patterns.

The American national surveillance network for
foodborne disease PulseNet, which controls subtyping of
Salmonella and other bacteria, used to perform pulsed-field
gel electrophoresis (PFGE) as a standard method for
molecular subtyping, until 2015. Then, laboratories
introduced WGS and collected sequences data to
standardize genotypic serotyping by SeqSero (http://
www.denglab.info/SeqSero). The PulseNet database is
using core genome MLST (cgMLST) and Single-nucleotide
polymorphism SNP analysis to exhibit the phylogenetic
relationships of the bacterial isolates. Antimicrobial
resistance is also studied by predicting antimicrobial
resistance determinants using in silico tools such as
ResFinder.96

In silico and Bioinformatics Tools:
The assembly of the Salmonella genome is a

fundamental step involving reconstructing the complete
genome sequence from raw sequencing data. In silico
genome assembly from sequencing data process DNA
fragments to accurately and exhaustively reconstruct the
bacterial genome sequence.97,98 This step is crucial for
identifying specific genes, coding regions, and functional
elements within the Salmonella genome. As for annotation,
it represents the process of identifying and characterizing
genes and functionalities within the assembled genome.
Annotation tools automatically annotate genes based on
their presumed function. These annotations are valuable
for understanding the roles of genes in pathogenicity, drug
resistance, and other biological characteristics of
Salmonella.99,100 The evolution of in silico tools in Whole
Genome Sequencing (WGS) has seen significant progress
driven by computational advancements. Early tools
struggled with short-read sequencing but gradually
improved with novel algorithms. With the rise of long-read
sequencing, new tools, offering better handling of longer
reads and more accurate assembly. Hybrid approaches
combining short and long reads further enhanced accuracy
and contiguity. Ongoing advancements prioritize speed,
accuracy, and scalability, refining algorithms to handle large
datasets efficiently while improving genome assembly's
precision and completeness.101,102 Specialized
bioinformatics tools like ResFinder, CARD, VFDB, or
Victors are designed to detect genes associated with
antimicrobial resistance and virulence factors within
Salmonella genomes. These tools use genetic data to predict
potential virulence and antimicrobial resistance and identify
the corresponding contributors and mechanisms. The latter
provides crucial information to understand disease
dynamics and adapt treatment strategies. By identifying
resistance genes in Salmonella strains, these tools help
anticipate resistance profiles and guide treatment choices,
contributing to a more targeted and effective approach to
combat infections.103-105 The development of such tools
makes food safety research shifting away from traditional
molecular subtyping approaches toward NGS-based
characterization methods.

CONCLUSION

In summary, Next generation sequencing technologies
such as whole genome sequencing have revolutionized the
field of microbiology, particularly in food safety and public
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health. These technologies provide unparalleled insights
into the genetic content of pathogens which enhances the
understanding of disease transmission and tracking. As
NGS evolves, it promises to become an even more integral
tool in microbiological research and outbreak response,
with potential applications expanding into more efficient,
high-resolution typing for a wide range of bacterial strains.
Overall, globally, food safety surveillance knows a
transitional phase from traditional molecular subtyping to
next-generation sequencing methods since it can identify
rapidly and with high precision genotypes, virulence
factors, antibiotic resistance, and phylogenetic relationships
of the bacterial strains, replacing conventional tests,
especially for hard-to-grow microorganisms. However,
challenges related to the practical limitations of its
implementation, like the need for sophisticated data
interpretation, regular database updates, and advanced
software persist, especially within developing countries.
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