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Transport properties of the fluid for hard convex body

Abstract : The Isotropic-symmetric and orientational co-relations for hard convex bodies (HCB) model, exhibit simpler

behavior in the surface-to-surface than in the more customary centre-to-center co-ordinate representation. The radial

wave equation of a HCB’s (hard convex bodies) model coordinate system has been described and expressed for the pair

intermolecular potential specified in terms of the support function h(x) for the calculation of the phase shifts. The

Intermolecular potential for HCB’S reduces to hard sphere (HS) Intermolecular potential for major and minor axis ratio

equal to one and has exactly the same surface-to- surface distribution as for HCB’s. Thus, the theoretical work supporting

the concept that the HCB model would prove to be as valuable as hard sphere model as reference fluid for real fluids.
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INTRODUCTION

The phase shifts is the solution of the radial wave

equation. The expression for the radial wave equation of a

HCB Model co-ordinate system has been described first

and expressed for the pair intermolecular potential specified

in terms of the support function h(x) and surface -to-

surface co-ordinate representation. The Transport

properties of the fluid for HCB model may be calculated if

one knows the cross section parameter of the transport

function. Phase shift is known for HCB model and cross

- section has also been expressed in terms of the phase

shift, so the cross- section of different transport parameter

may be calculated

METHODOLOGY

The support function h(x) is defined as the projection.
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ρ  is the vector extending from the centre to

the point on the surface to the minimum separation
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Where x defines the orientation of HCB’S and the

unit vectors e  is the director axis. When x=cos =1 the

orientation is along semi-major axis “a”, when x=cosq =0

the orientation is along semi-minor axis “b”.

For the HCB’S with semi-major axis “a” and the

semi-minor axis “b”, the support function is

 1/22X1bh(X)         Where 1
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And 
h(X)
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dh(X)
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The support function h(x) for 
a

b
 =1 reduces to a

(or a=b), and the intermolecular potential for HCB’S

reduces to hard sphere, Intermolecular potential which

has exactly the same surface - to -surface distribution as

the HCB’S
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The center-to-center distance )(kr  is
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To avoid the over lapping situation the expression for

has been 
Λ

( )r k


 Transformed to

  Xhkkkr 
^^

)(

With h(x) = h(x1) + h(x2)

In case of spherical molecules 
Λ

( )r k  reduces to

r = a+k or  b+k

In order to make calculations of phase shifts it is

necessary to specify the intermolecular potential function

in the radial wave equation.

The expression for 2  in terms of HCB’S co-

ordinate system is
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And,

The radial wave equation may be written in the reduced

form
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Where  *
( )

; J * J h (x) and 
K

K
h x

= =  
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μ =   ,

m is the mass of the particle, is the reduced mass

and is 1 2

1 2

m m
μ

m m
=

+
Here m1 = m2   for identical particle.
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h

h x E
=

μ

or, ( )
Δ*  

h

h x Em
= , is a reduced quantum parameter..

The reduced quantum mechanical parameter
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, when x = cos  = 1, the orientation is

along semi - major axis ‘a’ and

 
( )

1

2
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h

b mE
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When x = cos  = 0, the orientation is

along semi-Minor axis ‘b’.

The asymptotic solution of the radial wave equation

for real(interacting) and ideal (non-interacting) pairs of

molecules are sinusoidal  and differ only in the phase of

the sine functions, the difference being the phase shifts,


(J*). The phase shift depends upon the angular momentum

quantum number  and the wave number of relative

motion.

The integral expression for phase shifts for the HCB’S

model may be written as
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Thus the effective molecular cross- section for all

types of encounter in He3 is

( ) ( ) ( )
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Where,
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The effective cross section for He4 is given by

the expression Q(J*) B.E only.

For 
a

b
 = 2, the cross - section have been

calculated both for major and minor axis for He3 and He4

(table 1, 2, 3 & 4). The graphs for cross section of Helium

illustrate the diffraction effects on encountered in transport

phenomena are shown in figure 1, 2, 3 & 4.

The cross section for HS model (k,)  have also

been calculated  table 5 and 6 and their graphs are shown

in figure 5 and 6. This has been done for major axis only.

Because =
a

1,
b

 here.

Table - 1

Cross - section of He3 along major axis

J* R(J*) =

0.5 216.863

0.6 134.604

0.7 88.284

0.8 60.252

0.9 42.767

1 30.652
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J* R(J*) =

1.1 23.801

1.2 16.801

1.3 11.541

1.4 8.527

1.5 6.994

1.6 5.907

1.7 4.797

1.8 3.63

1.9 2.535

2 1.671

Table - 2

Cross - section of He4 along major axis

J*= Q(J*)

0.2 483.451

0.3 1.291.103

0.4 477.754

0.5 349.773

0.6 286.841

0.7 236.564

0.8 191.014

0.9 148.295

1 103.586

1.1 70.226

1.2 36.801

1.3 15.915

1.4 5.932

1.5 1.976

1.6 0.578

1.7 0.136

1.8 0.024

1.9 0.022

2 0.19

Table - 3

Cross - section of He3 along minor axis

J* R(J*) =

0.5 266.03

0.6 158.718

0.7 100.481

0.8 68.832

0.9 50.597

1 39.751

1.1 34.438

1.2 31.479

1.3 30.112

1.4 29.174

1.5 27.227

1.6 22.445

1.7 16.232

1.8 12.66

1.9 11.076

2 9.888

Table - 4

Cross - section of He4 along minor axis

J*= Q(J*)

0.1 320.817

0.2 339.975

0.3 406.502

0.4 656.722

0.5 547.205

0.6 365.879

0.7 282.426

0.8 230.03

0.9 190.105

1 156.317

1.1 132.703

1.2 111.273

1.3 92.892

1.4 73.535

1.5 48.566

1.6 22.388
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Table - 5

Cross - section of He3 for HS Model

J* R(J*) =

0.5 415.88

0.6 270.155

0.7 189.99

0.8 142.521

0.9 112.387

1 92.059

1.1 77.631

1.2 66.95

1.3 58.759

1.4 52.288

1.5 47.04

1.6 42.689

1.7 39.007

1.8 35.837

1.9 33.065

2 30.609

Table - 6

Cross - section of He4 for HS Model

J*= Q(J*)

0.1 39.611

0.2 39.02

0.3 38.408

0.4 37.761

0.5 37.069

0.6 36.32

0.7 35.526

0.8 34.67

0.9 33.757

1 32.787

1.1 31.765

1.2 30.693

1.3 29.579

1.4 28.43

1.5 27.254

1.6 26.06

Cross-Section of He3 along major axis

Figure -1

Cross-Section of He4 along major axis

Figure -2

Cross-Section of He3 along minor axis

Figure -3
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Cross-Section of He4 along minor axis

Figure -4

Cross-Section of He3 for HS Model

Figure -5

Cross-Section of He4 for HS Model

Figure -6

RESULT AND DISCUSSION

These results for the cross section have been plotted

in figures for comparison also. The most important

difference result from the different behavior of h
i  

for

small J* for the case of He3 and He4. Q (J*) for He4

becomes finite for minor axis and infinite for major axis

where as Q (J*) for He3 approaches to infinite for J* 
0 for HCB model case. This behavior repeated in case of

HS model for (k,  ) co-ordinate representation for

both He4 and He3.

CONCLUSION

The theoretical work supporting the concept that the

HCB model would prove to be as valuable as hard sphere

model as a reference fluid for real fluids. Thus the proposed

radial wave equation based on the surface-to-surface

distance K and the potential defined in terms of the support

function h(x) simplifies the determination of phase shift

and cross-section for HCB’S model. The calculated cross-

section values of He4 and He3 may be used for the

calculation of the transport properties
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