

ISSN: 0973-7057

Some aspects on generalization of struve transformation

Bishundeo Saha* & Vijay Kumarb

^aDept. of Mathematics, Marwari College, Ranchi University, Ranchi ^bDept. of Mathematics, K.O. College, Gumla, Ranchi University, Ranchi, Jharkhand

Received: 12th May, 2015; Revised: 17th July, 2015

Abstract: This paper deals with some aspects of Struve transformation which has been extended to a class of generalized function.

Keywords: Struve Transformation, Generalized Function, Testing Function.

INTRODUCTION

The classical Struve Transformation of a function f is defined by ∞

$$(H_{\nu}f)(x) = \int_{0}^{\infty} (xt)^{1/2} H_{\nu}(xt) f(t) dt$$
_{1.1}

Where $H_{\nu}(z)$ is the Struve function of order ν given by [of Love(2) Rooney (1)] it in detail. The aim of present work is to extend the Struve transform to a class of generalized function and establish its inversion.

DEFINITION

The Struve function $H_{\nu}(z)$ of order ν is defined by

$$\Gamma\left(v+\frac{1}{2}\right)H_{\nu}(z) = \frac{2\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi}} \int_{0}^{\pi/2} \sin(z\cos\phi)\sin^{2\nu}\phi d\phi \quad 2.1$$

Or,
$$H_{\nu}(z) = \sum_{m=0}^{\infty} \frac{(-1)^m \left(\frac{z}{2}\right)^{\nu+2m+1}}{\Gamma\left(m+\frac{3}{2}\right)\left(\nu+m+\frac{3}{2}\right)};$$

m = 1, 2, 3.... for all value of v 2.2

*Corresponding author:

Phone: 9199532826

E-mail: shahbishnudeo@gmail.com

2. The testing function Space $H_{\alpha}(I)$ and its

dual $H_{\alpha}^{\prime}(I)$

For a fixed positive number \dot{a} and an interval $I(0, \infty)$

 $H_{lpha}(I)$ to be set of all those complex valued smooth function $\phi(t)$ defined on I if

$$\gamma_k^{\alpha}(\phi) = \sup_{0 < t < \infty} |e^{-\alpha t} \left(t \frac{d}{dt} \right)^k \varphi(t)| < \infty$$
 3.1

We see that for each $k = 0, 1, 2 \dots$

 $\gamma_k^{\alpha}(\phi)$ is semi norm on while a norm equipped with the topology generated by 0, 1, 2become countably multinomed space if $\{\phi_n\}_{n=1}^{\infty}$ converges to $\phi \in H_{\alpha}(I)$ then $\{\phi_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $H_{\alpha}(I)$

If $\{\phi_n\}_{n=1}^{\infty}$ be a sequence of functions $H_{\alpha}(I)$ in converging to zero when $n \to \infty$ then the non – negative integer $r, \{D^r \phi_n\}$ converges to zero uniformly on every compact subset of $(0,\infty)$ as $n \to \infty$. We define $H_{\alpha}'(I)$ to be the set of all those complex valued smooth function $\phi(t)$ defined on I if

Biospectra: Vol. 10(2), Sept., 2015.

An International Biannual Refereed Journal of Life Sciences

$$\sup_{0 \le t \le \infty} |e^{-\alpha t}t^r \frac{d^r}{dt^r} [\phi(t)]| < \infty$$
 3.2

$$H_{\alpha}'(I) = \{ \phi : \phi \in c^{\infty}(0, \infty) \text{ and } \sup_{0 < t < \infty} |e^{-ct}t^{r} \frac{d^{r}}{dt^{r}} [\phi(t)] | < \infty \}$$

$$r = 1, 2, \dots \}$$
3.3

where c is a constant not depend on n

 $H_{\alpha}^{'}(I)$ are defined in a way similar to these defined in $H_{\alpha}(I)$. The space $H_{\alpha}^{'}(I)$ is a complete countably multinormed space and hence is a testing function space.

3. Lemma

For
$$\alpha > 0$$
, Re $\left(v + \frac{1}{2}\right) > 0$, $t, x > 0$ then,

(i)
$$(xt)^{1/2}H_{\nu}(x,t) \in H_{\alpha}(I)$$
 4.1

(ii)
$$D_x^m[(xt)^{\frac{1}{2}}H_v(x,t)] \in H_\alpha(I)$$
 4.2

<u>Proof</u>: By the differential prop. of struve function we have

$$\left(t\frac{d}{dt}\right)^{k} \left(\sqrt{z} H_{\nu}(z)\right) = \sum_{j=0}^{k} a_{j}(v) z^{\frac{1}{2}+j} H_{\nu-j}(z)$$

where is a polynomial in v.

Hence, we have

$$P_r^{\alpha}[h(xt)] = \sup_{0 < t < \infty} |e^{-\alpha t} \left(t \frac{d}{dt} \right)^r [h(xt)]]| \qquad 4.3$$

$$\sim e^{-\alpha t} (xt)^{v+\frac{1}{2}} \longrightarrow 0 \text{ as } t \longrightarrow 0 \text{ if } \operatorname{Re}\left(v+\frac{1}{2}\right) > 0$$

This show that $h(x,t) \in H_{\alpha}(I)$

Under the same conditions

$$D_x^m [(xt)^{1/2} H_v(xt)] \in H_\alpha(I)$$

4. The generalized transform. For $f \in H'_{\alpha}(I)$, the generalized Struve transform is defined by

$$s[f] = F(x) = \langle f(t), \sqrt{(xt)}H_{v}(xt) \rangle$$
 5.1

where x is a non – zero real number and t > 0. From Lemma, we know that for fixed x > 0.

$$\sqrt{(xt)}H_{\nu}(xt) \in H_{\alpha}(I),$$

where $v > -\frac{1}{2}$, $\alpha > 0$. The relation (5.1) is

meaningful.

Theorem 5.1

Let

a)
$$f \in H'_{\alpha}(I)$$

and

b)
$$F(x) = \langle f(t), h(xt) \rangle 0 < x < \infty$$

Then
$$F(x) \in H_{\alpha}(I)$$
 for $\dot{a} > 0$, $\text{Re}\left(v + \frac{1}{2}\right) > 0$

Proof:

From Lemma, to show that $F(x) \in H_{\alpha}(I)$, it is sufficient to show that

(i)
$$F(x) \in C^{\infty}(0,\infty), 0 < x < \infty$$
 and

(ii)
$$Sup\left|e^{-\alpha x}x^n\frac{d^nF(x)}{dx^n}\right|<\infty,\alpha>0.$$

Now (i) is obvious from Theorem 4 [N. K. Agrawal and Vijay Kumar [5]

Also,

$$\frac{d^n F(x)}{dx^n} = \frac{\partial^n}{\partial x^n} < f(t), h(xt) >$$

$$= \langle f(t), \frac{\partial^n h(xt)}{\partial x^n} \rangle$$

From boundedness property of generalized function, we have

$$\frac{d^n F(x)}{dx^n} \le C \max_{0 \le 1 \le q} \gamma_1^{\alpha} \frac{\partial^n h(xt)}{\partial x^n}$$
 5.2

where C and q are constant depending upon f.

$$\left| e^{-\alpha x} x^n \frac{d^n F(x)}{dx^n} \right|$$

$$\leq C \max_{0 \leq 1 \leq q} \sup_{0 < t < \infty} \left| e^{-\alpha x} x^n e^{-\alpha x} t^1 \frac{\partial^1}{\partial t^1} \frac{\left(d^n h(xt) \right)}{dx^n} \right|$$

$$\leq C \max_{0 \leq 1 \leq q} \sup_{0 < t < \infty} \left| e^{-\alpha(x+t)} x^n t^1 \frac{\partial^1}{\partial t^1} \left(\sum_{j=0}^n b_j(v) x^{j-n} t^j \sqrt{xt} H_{v-j}(xt) \right) \right|$$

$$\leq C \max_{0 \leq 1 \leq q} \sup_{0 < t < \infty} \left| e^{-\alpha(x+t)} x^n t^1 x^{l-n} \sum_{j=0}^n \sum_{p=0}^l b_j(v) A_{(v,j,p)}(xt)^{j-l+p+\frac{1}{2}} H_{v-j-p}(xt) \right|$$

$$\leq C \max_{0 \leq 1 \leq q} \sup_{0 \leq t \leq n} \left| e^{-\alpha(x+t)} \sum_{0 \leq t \leq n} \left\{ b_j(v) A_{(v,j,p)}(xt)^{j+p+\frac{1}{2}} H_{v-j-p}(xt) \right\} \right|$$

Sah & Kumar: Some aspects on generalization of struve transformation

$$< \infty \text{ for } \operatorname{Re}\left(v + \frac{1}{2}\right) > 0, \ \dot{a} > 0.$$

Hence (ii) is proved.

ACKNOWLEDGEMENT

Authors are thankful to the teachers of Post Graduates, Dept. of Mathematics, Ranchi University, Ranchi.

REFERENCES

1. **P. G. Rooney,** On the Y_{ν} and H_{ν} transformations, Canad J. Math, 32 (5) (1980), 1021 – 1044.

- 2. **E. R. Love,** Inversion of the Struve Transform, Fractional Calculus (Glasgow, 1984), 75 86, Res. Notes in Math, 138, London, 1985.
- 3. **P. Heywood and P. G. Rooney,** On the Struve Transformation, SAIM J. Math. Anal., 25(2) (1994) 450 461
- 4. **Zemanian, A.H.,** A Distributional Hankel Transformation, SIAM J. Appl. Math., 14 (1996), 561 576.
- 5. N. K. Agrawal and Vijay Kumar, On Distributional Struve Transformation, Jnanabha, Vol. 30, 2000.

* * *

Biospectra: Vol. 10(2), Sept., 2015.

An International Biannual Refereed Journal of Life Sciences

BIOSPECTRA

ISSN: 0973-7057

An International Biannual Refereed Journal of Life Sciences

(An official publication of the Madhawi Shyam Educational Trust & ICCB, Ranchi) Reg. No. - 20560/4 - 1815/2005

MEMBERSHIP FORM

Name (in block letters):									
Qualification:									
Occupation / Profession & Designation :									
Field of Research:									
Address (A) Office:									
	(B)	Residence :							
Mailing Address:									
		City							
Phone: (Office) (Residence)									
	•	lobile:Fax:.			E-mail :				
Nature of Membership (pl. tick): Two years ()	Life Tin	ne ()		
Details of Draft :		Rs		No	I	Ot			
		Issuing Bank			Drawn on				
Recommended by:									
Declaration: I am taking the membership willingly, under no compulson whatsoever.									
Place & Date :				Signature of Applicant					
i			ubscription Str				i		
Membership subscription should be paid in form Bank Draft payable in favour of Madhawi Shyam Educational Trust, Ranchi (outstation cheque with Rs. 50/- extra									
as bank collection charge) or can be e-transferred in the trust A/c of Union Bank of Inida No.300802010967020 as per following options :-									
Categor		02010967020 as	s per following o	ptions	S:- India	Abroad			
Individua	ıl (Studen		Two years		Rs. 2000/-	US\$ 40			
Individua	ıl (Studen		Two years Life (FMSET & FIC		Rs. 3000/- Rs. 5000/-	US\$ 60 US\$ 80			
Individua Institutio	•	er/Scientist)	Life (FMSET & FIC Two years	CB)	Rs. 6000/- Rs. 5000/-	US\$ 100 US\$ 100			
Institutio			Ten years		Rs.21,000/-	US\$ 400			